April 10, 2017

Heating the Midwest

International Biomass Conference and Expo Biomass for Residential and Commercial Heating in Off-Grid Communities *A Case Study of Bella Coola, British Columbia*

Jamie Stephen, PhD

Managing Director, TorchLight Bioresources

Warren Mabee, PhD

Canada Research Chair and Associate Professor, Queen's University

Gary Bull, PhD

Professor and Department Head, University of British Columbia

Overview

Background Alternatives DES/Decentralized Economics & Risks Co-generation Wood Products Conclusion

Overview

- Background Remote Communities & Bella Coola
- Heating Oil, Propane, Firewood, and Electric Alternatives
- District Energy vs. Decentralized Boilers
- Heat Economics and Risks
- **Co-generation** of Electricity
- Integration with **Wood Products** in a cluster approach
- Conclusion

Overview Background

Alternatives DES/Decentralized Economics & Risks Co-generation Wood Products Conclusion

Background Remote Communities in Canada

- Not connected to North American electrical grid
 - 200 communities
 - Population of ~ 200,000
 - Range from 10 to ~25,000 people
 - Energy cost up to 10x average in Canada
 - Many First Nations (aboriginal) communities
 - > A large number in NT, YK, QC, ON, and BC
- Micro-grid generation
 - Diesel dominates
 - Small hydro common
 - Several have integrated wind and/or solar
- Firewood heating common
- Remote location impacts cost of heating alternatives

Overview Background

Alternatives DES/Decentralized Economics & Risks Co-generation Wood Products Conclusion

Background Bella Coola, BC

- Bella Coola Valley
 - Village and Four Mile; Hagensborg
 - Traditional territory of the Nuxalk Nation
 - Connected to Williams Lake by gravel road
 - Docking facilities
 - > 1900 people in the valley; 850 on-reserve
 - Reserve average income <40% BC average</p>
 - Reserve estimates of unemployed: 70-80%
- Research support: Nuxalk Development Corp. & MITACS
 - UBC lead academic institution
 - Bioheat one of nine projects on economic opportunities from the forest
 - Projects on biopower, briquetting, CNC products
 - Support tenure of 20,000 m³/yr, harvest of 12,500 m³/yr, and milling of 4,000 m³/yr

Overview Background <u>Alternatives</u> DES/Decentralized Economics & Risks Co-generation

Wood Products

Conclusion

Business-As-Usual Nuxalk Reserve, BC

	Heating Oil	Propane	Electricity	Firewood
Consumption	435,000 L	110,000 L	4,484,000 kWh	900 cords
Cost of Heat (\$/MWh)	163	141	130 (410*)	46

- 275 residences, 30 commercial buildings
 - Most residences use firewood, back-up heating oil, and electric hot water
 - Commercial buildings usually propane
 - Electricity cost subsidized by BC Hydro
 - Band office and school use ground-source heat pump and hydronic heating systems
- Yearly consumption of ~12,000 MWh (41,000 MMBTU)
 ➢ Average cost of heat = \$100 MWh (\$29/MMBTU)

Overview Background Alternatives **DES/Decentralized** Economics & Risks Co-generation Wood Products Conclusion

DES vs. Decentralized Local and Imported Fuel

District Energy System

- Surveyed community and used GIS analysis
- Four different layouts; energy centre in 4 Mile (flood)
- Heat load dictates pipe diameter
- Space and hot water heating
- Assumed harvest residue feedstock, covered storage
- RetScreen used for costing and climate

Decentralized Boilers

- Boilers scaled, including buffer, for each building
- Bulk purchase of Fröling boilers (Evergreen pricing)
- Pellet fuel assumed trucked from Williams Lake
- Space and hot water heating
- Retain forced-air systems (heating coil)

Overview Background Alternatives **DES/Decentralized** Economics & Risks Co-generation Wood Products Conclusion

District Energy System

Overview Background Alternatives **DES/Decentralized** Economics & Risks Co-generation Wood Products Conclusion

TORCHLIGHT BIORESOURCES

9

Bella Coola & Four Mile

server

Four Mile

Bella Coola Village

Bella Coola Village

Overview Background Alternatives DES/Decentralized Economics & Risks

Co-generation Wood Products Conclusion

Economics & Risks Summary Results

District Energy System

- Four scenarios
- > 2.1-5.2 MW capacity (relatively flat load curve)
- ≻ \$7.8-18.2 M
- Smallest and largest most economical
- \$128-154/MWh (\$38-45/MMBTU)
- Control of fuel supply

Decentralized Boilers

- Three scenarios
- ≻ \$2.8-7.2 M
- \$110-127/MWh (\$32-37/MMBTU)
- Still dependent upon fuel imports

Overview Background Alternatives DES/Decentralized **Economics & Risks**

Co-generation Wood Products Conclusion

Economics & Risks Policy and Community Considerations

• Electricity is subsidized

- Pay \$0.13-0.17/kWh; diesel cost = \$0.41/kWh
- BC Hydro has incentive to reduce electrical space and hot water heating

• Low cost firewood

- Pellet boilers/DES higher cost
- Isolated community, little travel
- > Stay at home
- Firewood boilers may be best option
- No sewage system
 - DES installation more economically competitive if installed at same time
 - Flooding in Bella Coola septic problems

Overview Background Alternatives DES/Decentralized Economics & Risks <u>Co-generation</u> Wood Products Conclusion

Co-generation

- Sister study compared ORC & gasification/ICE
 - 300 kW ORC could fit load profile of community
 - Need heat revenue (DES) match e-/heat load
 - Competitive with BAU (assuming no subsidy)

- TorchLight and QIEEP completed study on small-scale (<3 MWe) biomass CHP technologies for NRCan
 - 40 companies/technologies assessed

Overview Background Alternatives DES/Decentralized Economics & Risks Co-generation <u>Wood Products</u> Conclusion

Wood Products Cluster Examining the Role of Bioheat

- Integration of bioheat with other forest products
 - Community-scale sawmill
 - > CHP, briquettes, pellets
 - Solid wood products digital technologies, CNC

FOREST PRODUCTS CLUSTER

Overview Background Alternatives DES/Decentralized Economics & Risks Co-generation Wood Products <u>Conclusion</u>

Conclusion

- High cost of energy in remote communities
- BAU fuel will impact viability of DES and pellets
- Heat load density critical for DES
- Co-generation can be possible at small-scale if displacing diesel/heating oil and regulations are supportive
- Bulk purchase of boilers can improve economics
- Integration with solid wood products cluster
- Solid wood products create jobs and increases income, bioheat reduces operating costs
- Community priorities determine best option

April 10, 2017

Heating the Midwest

International Biomass Conference and Expo

Thank you!

Biomass for Residential and Commercial Heating in Off-Grid Communities *A Case Study of Bella Coola, British Columbia*

Jamie Stephen, PhD

jstephen@tlbio.com www.torchlightbioresources.com

Warren Mabee, PhD

warren.mabee@queensu.ca www.queensu.ca

Gary Bull, PhD

gary.bull@ubc.ca www.ubc.ca

