Harvesting and Processing Biomass Experiences and Challenges

Jay Van Roekel
Biomass Business Manager

MAKING GREEN POSSIBLE
Vermeer Corporation

Forage Solutions

Environmental Solutions

Specialty Excavation

Solutions for UG Installations
Corn Residue Harvesting

Methods vs. Yield

1. **Corn cobs only** – removes *15% of residue
2. **Direct bale** – removes *25% of residue
3. **Rake/Bale** – removes *50% of residue
4. **Shred or chopping corn head/rake/bale** – removes up to *75% of residue

*Approximate removal rates
Corn Residue Harvesting

Challenges

- Tight harvest window
- Moisture level variations
- Corn variety
- Sustainability
- Dirt/Ash content vs. residue yield
- Long-term storage
- Current equipment built for typical farming applications
Common Energy Crops

Switchgrass
Miscanthus
Energy cane
King grass
Arundo

Process

- Switchgrass, Miscanthus – single harvest after frost
 - Mow – (rake option) – bale
- King, canes, Arundo…. tropical
 - Mow – dry down - bale
Energy Crops - Challenges

• Mowing tall, high-volume crops
• Moisture content at harvest
 • Weather – fall, cool temps, frost, rain/snow
 • Tropical customer understanding of higher moisture bales and the impact to storage
• Ash content during harvest
Storage of Biomass Bales

- Single row vs. stack
- Gravel bed vs. dirt
- Tarp vs. building
- Round vs. square
- Netwrap vs. twine
Round vs Square

Purchase price (1/3)
HP to operate (1/2)
Storage – moist climates
12x – units sold annually

Continuous baling
Trailer loading/hauling

Common Ground
Similar performance in most crops
Bale density
Crop preparation and bale handling
Feedstock Specifications being defined – OEM needs clarification

- **Food** grade vs **Fuel** grade biomass
- Consistency
- Moisture content / range impacts harvest window
- Ash content
- Density - truck weight & quantity, distance, energy to harvest, cost to manufacture/operate
- Next process – grind, material size, can we create more value in field
- Who is the customer?
 - farm
 - custom
 - regional center
 - plant
- Feedstock value (farm ROI)
 - Harvest cost
 - Harvest impact
 - Market need

Many opportunities to improve once specifications are clear
Biomass Processing

- Biomass moisture and ash levels are critical
 - Effects productivity, consistency, wear, etc.
 - Storage and harvest methods important
- Need for flexibility in product and size
 - One solution is not the answer for everyone
- Multiple pass processing tends to be more efficient method when pelletizing or fermenting
 - Contaminants
- In plant vs. infield processing
- Diesel vs. electric
- Must have dust control
- Feeding the “System” capacity
Processing Biomass Non-Woody

Bioscreen Kit

- Better size control
- Variable moisture OK
- Lower maintenance costs
Processing Biomass

- **TG5000**
 - Loader option
 - Diesel or electric
 - Trailer or skid
 - 540 HP
 - Bioscreen

- **Biomass**
 - Round or square
 - Loose, bulky material
 - No longer than tub dia.
How a Tub Grinder Works
Processing Biomass

• HG6000
 – Diesel or electric
 – Trailer or skid
 – 700 HP
 – Bioscreen

• Bales –
 – Large square or up to 4’ dia. round
 – Logs, brush, C&D
How a Horizontal Grinder works
Biomass Opportunities - Equipment Evolution

• Higher duty cycle products to harvest & process
• Flexibility in processing equipment
• Profitability: land owner – harvester – storage site - transport – process – energy producer
• Contaminants (ash) & varying moisture
• Logistics of low-density biomass
• Consistent feedstock to end user
• Year-round supply – storage
• Commercial scale supply
Questions?
Vermeer Corporation reserves the right to make changes in engineering, design and specifications; add improvements; or discontinue manufacturing at any time without notice or obligation.

Vermeer and Vermeer logo are the trademarks of Vermeer Corporation in the U.S. and/ or other countries.

© 2013 Vermeer Corporation
All rights reserved