Biomass for Residential and Commercial Heating in Off-Grid Communities

A Case Study of Bella Coola, British Columbia

Jamie Stephen, PhD
Managing Director, TorchLight Bioresources

Warren Mabee, PhD
Canada Research Chair and Associate Professor, Queen’s University

Gary Bull, PhD
Professor and Department Head, University of British Columbia
Overview

• **Background** – Remote Communities & Bella Coola

• Heating Oil, Propane, Firewood, and Electric **Alternatives**

• **District** Energy vs. **Decentralized** Boilers

• Heat **Economics and Risks**

• **Co-generation** of Electricity

• Integration with **Wood Products** in a cluster approach

• **Conclusion**
Remote Communities in Canada

- Not connected to North American electrical grid
 - 200 communities
 - Population of ~200,000
 - Range from 10 to ~25,000 people
 - Energy cost up to 10x average in Canada
 - Many First Nations (aboriginal) communities
 - A large number in NT, YK, QC, ON, and BC

- Micro-grid generation
 - Diesel dominates
 - Small hydro common
 - Several have integrated wind and/or solar

- Firewood heating common

- Remote location impacts cost of heating alternatives
Background

Bella Coola, BC

- Bella Coola Valley
 - Village and Four Mile; Hagensborg
 - Traditional territory of the Nuxalk Nation
 - Connected to Williams Lake by gravel road
 - Docking facilities
 - 1900 people in the valley; 850 on-reserve
 - Reserve average income <40% BC average
 - Reserve estimates of unemployed: 70-80%

- Research support: Nuxalk Development Corp. & MITACS
 - UBC lead academic institution
 - Bioheat one of nine projects on economic opportunities from the forest
 - Projects on biopower, briquetting, CNC products
 - Support tenure of 20,000 m³/yr, harvest of 12,500 m³/yr, and milling of 4,000 m³/yr
Bioheat in Remote Communities

Nuxalk Reserve, BC

<table>
<thead>
<tr>
<th></th>
<th>Heating Oil</th>
<th>Propane</th>
<th>Electricity</th>
<th>Firewood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>435,000 L</td>
<td>110,000 L</td>
<td>4,484,000 kWh</td>
<td>900 cords</td>
</tr>
<tr>
<td>Cost of Heat ($/MWh)</td>
<td>163</td>
<td>141</td>
<td>130 (410*)</td>
<td>46</td>
</tr>
</tbody>
</table>

- 275 residences, 30 commercial buildings
 - Most residences use firewood, back-up heating oil, and electric hot water
 - Commercial buildings usually propane
 - Electricity cost subsidized by BC Hydro
 - Band office and school use ground-source heat pump and hydronic heating systems

- Yearly consumption of ~12,000 MWh (41,000 MMBTU)
 - Average cost of heat = $100 MWh ($29/MMBTU)
DES vs. Decentralized

Local and Imported Fuel

District Energy System
- Surveyed community and used GIS analysis
- Four different layouts; energy centre in 4 Mile (flood)
- Heat load dictates pipe diameter
- Space and hot water heating
- Assumed harvest residue feedstock, covered storage
- RetScreen used for costing and climate

Decentralized Boilers
- Boilers scaled, including buffer, for each building
- Bulk purchase of Fröling boilers (Evergreen pricing)
- Pellet fuel assumed – trucked from Williams Lake
- Space and hot water heating
- Retain forced-air systems (heating coil)
District Energy System
Bioheat in Remote Communities

Overview
Background
Alternatives
DES/Decentralized
Economics & Risks
Co-generation
Wood Products
Conclusion
Bella Coola Village
Economics & Risks

Summary Results

District Energy System

- Four scenarios
- 2.1-5.2 MW capacity (relatively flat load curve)
- $7.8-18.2 M
- Smallest and largest most economical
- $128-154/MWh ($38-45/MMBTU)
- Control of fuel supply

Decentralized Boilers

- Three scenarios
- $2.8-7.2 M
- $110-127/MWh ($32-37/MMBTU)
- Still dependent upon fuel imports
Economics & Risks

Policy and Community Considerations

- **Electricity is subsidized**
 - Pay $0.13-0.17/kWh; diesel cost = $0.41/kWh
 - BC Hydro has incentive to reduce electrical space and hot water heating

- **Low cost firewood**
 - Pellet boilers/DES higher cost
 - Isolated community, little travel
 - Stay at home
 - Firewood boilers may be best option

- **No sewage system**
 - DES installation more economically competitive if installed at same time
 - Flooding in Bella Coola – septic problems
Co-generation

• Sister study compared ORC & gasification/ICE
 - 300 kW ORC could fit load profile of community
 - Need heat revenue (DES) – match e-/heat load
 - Competitive with BAU (assuming no subsidy)

• TorchLight and QIEEP completed study on small-scale (<3 MWe) biomass CHP technologies for NRCan
 - 40 companies/technologies assessed
Wood Products Cluster

Examining the Role of Bioheat

- Integration of bioheat with other forest products
 - Community-scale sawmill
 - CHP, briquettes, pellets
 - Solid wood products – digital technologies, CNC
Conclusion

• High cost of energy in remote communities
• BAU fuel will impact viability of DES and pellets
• Heat load density critical for DES
• Co-generation can be possible at small-scale if displacing diesel/heating oil and regulations are supportive
• Bulk purchase of boilers can improve economics
• Integration with solid wood products cluster
• Solid wood products create jobs and increases income, bioheat reduces operating costs
• Community priorities determine best option
Thank you!

Biomass for Residential and Commercial Heating in Off-Grid Communities
A Case Study of Bella Coola, British Columbia

Jamie Stephen, PhD
jstephen@tlbio.com
www.torchlightbioresources.com

Warren Mabee, PhD
warren.mabee@queensu.ca
www.queensu.ca

Gary Bull, PhD
gary.bull@ubc.ca
www.ubc.ca