Biomass for Cooling System Technologies: A Feasibility Guide

Heating the Midwest – Minneapolis, MN
April 10, 2017

Agricultural Innovation: From Idea to Reality
About AURI

• AURI helps discover new uses for agricultural commodities

• AURI was created by the MN Legislature, and its mission is to foster long-term economic benefit through value-added agricultural products.
AURI Locations

Crookston
510 County Road 71
Crookston, MN 56716
800.279.5010

Marshall
1501 State St.
Marshall, MN 56258
507.537.7440

St. Paul
1475 Gortner Ave.
St. Paul, MN 55108
651.624.6055

Waseca
PO Box 251
Waseca, MN 56093
507.835.8990
Focus Areas

- Renewable Energy
- Coproducts
- Biobased Products
- Food
AURI’s Services

Applied Research and Development

Hands-On Scientific Assistance

Innovation Networking
AURI Waseca Lab

- Coproduct Utilization
 - Grinding
 - Milling
 - Size reduction
 - Blending
 - Pelleting
 - Drying
 - Product characterization
 - Particle size analysis
Biomass for Cooling System Technologies: A Feasibility Guide

Coauthors:
Roopesh Pushpala Graduate Research Assistant University of Minnesota, CURA
Agricultural Utilization Research Institute
Biomass for Cooling System Technologies: A Feasibility Guide

• **Project Partners:**
 - University of Minnesota, Center for Urban and Regional Affairs (CURA)
 - University of Minnesota, Northwest Regional Sustainable Development Partnership (NWRSDP)
 - Western Illinois University, Illinois Institute for Rural Affairs (IIRA)
 - Northwest Minnesota Multi-County Housing & Redevelopment Authority (NWMNHRA)
 - Greater Minnesota Management (GMM)
 - Northwest Manufacturing, Inc. / WoodMaster, Minnesota
 - Pinecrest Medical Care Facility, Michigan
 - Heating the Midwest Biomass Resources & Demographics Action Team
Biomass for Cooling System Technologies: A Feasibility Guide

• **Project Intent**
 – Identify innovations that utilize biomass as the energy source for cooling systems
 – Small to medium sized applications
 – Assess basic economic analysis of various energy sources
 – Assess basic economic installation cost on a multi-housing unit
Biomass for Cooling System Technologies: A Feasibility Guide

Different Types of Biomass Fuel

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Retail Cost (Minnesota)</th>
<th>Btu/lb</th>
<th>Cost/Mbtu</th>
<th>Cost/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Chips*</td>
<td>$60/ton</td>
<td>4,300</td>
<td>$9.30</td>
<td>$0.03</td>
</tr>
<tr>
<td>Wood Pellets*</td>
<td>$160/ton</td>
<td>8,250</td>
<td>$12.93</td>
<td>$0.04</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>$13.21/Mcf**</td>
<td>19,000</td>
<td>$15.73</td>
<td>$0.05</td>
</tr>
<tr>
<td>Propane</td>
<td>$2.60/gal</td>
<td>21,500</td>
<td>$33.49</td>
<td>$0.10</td>
</tr>
<tr>
<td>Corn Cobs</td>
<td>$60/ton</td>
<td>7,461</td>
<td>$5.74</td>
<td>$0.02</td>
</tr>
<tr>
<td>Heating Oil</td>
<td>$3/gal</td>
<td>18,104</td>
<td>$30.90</td>
<td>$0.11</td>
</tr>
<tr>
<td>Electricity</td>
<td>$.1135/kWh</td>
<td>3,412/kWh</td>
<td>$34.28</td>
<td>$0.14</td>
</tr>
</tbody>
</table>

*Note. *Bulk; ** Mcf=Thousand cubic feet; **Peak summer average price.
Biomass for Cooling System Technologies: A Feasibility Guide

• **Technologies Identified**

 – Absorption chiller generates the air cooling effect from the heat generated

 – The heat from the biomass is used to operate the absorption chiller to cool the air
Biomass for Cooling System Technologies: A Feasibility Guide

• Absorption Chiller Manufacturers (capable of utilizing biomass thermal and Lithium Bromide as a refrigerant)
 – Yazaki Energy Systems, Japan
 – Trane Systems (Thermax), U.S.A.
 – BSH Innovative Heating & Cooling Solutions, N. Ireland
Biomass for Cooling System Technologies: A Feasibility Guide

Analysis of **Wood Pellets as the Primary Source of Energy** (per month) using absorptive chilling VS

Analysis of **Electricity of Conventional Air Conditioning Unit** (per month)
Biomass for Cooling System Technologies: A Feasibility Guide

• **Estimate based on average household electricity consumption of 911 kWh**

 – Average wood pellet cost per month: $40.18 (absorption chiller)

 – Average electrical cost per month: $47/month (COP=2.2) to $30.29/month (COP= 3.4)

 • COP is defined as the ratio of heat removal to the energy input to the compressor.

 • Coefficient of Performance (COP) for electrical cooling (range 2.2 to 2.5)

• Source:

Biomass for Cooling System Technologies: A Feasibility Guide

- **Economics of the Technology**

Capital Costs of 30 Ton Cooling System

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass boiler</td>
<td>$ 68,378*</td>
</tr>
<tr>
<td>Absorption chiller</td>
<td>$ 65,000**</td>
</tr>
<tr>
<td>Control system</td>
<td>$ 14,000</td>
</tr>
<tr>
<td>Cooling tower</td>
<td>$ 5,040***</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$152,418</td>
</tr>
</tbody>
</table>

Note. *(G. Gagner, personal communication, June 8, 2016) **(M. Spresser, personal communication, June 6, 2016) ***(HVAC Brain, Inc., 2016)*
Biomass for Cooling System Technologies: A Feasibility Guide

- Economics of the Technology – 30 ton cooling system
 - Estimated Installation and Pipelining Cost: $173,391

- Total Cost
 - Capital/Product Costs: $152,418
 - Pipelining & Installation Costs: $173,391

GRAND TOTAL: $325,890
Biomass for Cooling System Technologies: A Feasibility Guide

• Potential Application of a Cooling System
 – Small scale industries
 – Strip malls
 – Quad homes
 – Townhomes
Biomass for Cooling System Technologies: A Feasibility Guide

• Conclusions

 – Worth consideration if:

 • Constructing a new building
 • Retrofitting a current system where piping is in place
 • Potential utilization of a hybrid biomass system
Questions?

Full copies of the report are available at:

auri.org

Or

At our Booth